Детская энциклопедия
Том 1. Земля. Том 4. Растения и животные. Том 7. Человек. Том 10. Зарубежные страны.
Том 2. Мир небесных тел. Числа и фигуры. Том 5. Техника и производство. Том 8. Из истории человеческого общества. Том 11. Язык. Художественная литература.
Том 3. Вещество и энергия. Том 6. Сельское хозяйство. Том 9. Наша советская Родина. Том 12. Искусство.

Если выстрелить снаряд наклонно или вертикально к земной поверхности, он всегда упадет на Землю.

планеты обращаются вокруг Солнца по эллип­сам, причем само Солнце располагается в одном из фокусов эллиптической орбиты планеты. Так же и в системе «Земля — снаряд» центр Земли будет всегда в одном из фокусов эллипса, по которому движется снаряд. Поэтому если выстрелить наклонно, то чем больше будет уве­личиваться скорость, тем все дальше и дальше будет падать снаряд. Чем больше будет его ско­рость, тем больший эллипс он опишет в прост­ранстве, но на обратном пути к точке бросания он обязательно должен пройти «сквозь Землю», так как может двигаться только по эллипти­ческой траектории, часть которой, как видно из рисунка, всегда проходит «внутри Земли». Итак, наклонный выстрел мало что даст — снаряд в любом случае должен пройти «сквозь Землю». Попробуем теперь установить наше орудие на горе и стрелять горизонтально (для простоты мы не будем учитывать влияние зем­ной атмосферы и вращение Земли). При неболь­ших скоростях снаряды «по эллипсу» будут падать на Землю. Но чем больше скорость, тем

больше эллипс будет приближаться к окруж­ности с центром в центре Земли. При скорости, которую принято называть первой космиче­ской или круговой, снаряд уже не упадет на Землю, а, если мы успеем убрать орудие, пролетит с той же скоростью через точку выст­рела и будет бесконечно обращаться вокруг Земли по круговой орбите, т. е. станет искус­ственным спутником Земли.

Первая космическая скорость у поверх­ности Земли составляет примерно 7,9 км/сек. Такую огромную скорость не может сообщить снаряду ни одна пушка — это под силу только ракетам.

Дальнейшее увеличение скорости будет вы­тягивать окружность в эллипсы, с той только разницей, что второй фокус каждого эллипса будет перемещаться все дальше и дальше от центра Земли в сторону, противоположную точке бросания, или точке старта.

При скорости 11 км/сек ракета удалится на расстояние больше половины пути до Луны, а при скорости 11,1 км/сек обогнет Луну и сно­ва вернется к Земле.

При дальнейшем увеличении скорости до 11,2 км/сек эллиптическая орбита «разорвется» и превратится в разомкнутую кривую — пара­болу, по которой ракета навсегда покинет Землю. Скорость 11,2 км/сек называется второй космической скоростью, или скоростью отры­ва, или, наконец, параболической скоростью.

Ракета или снаряд, получившие такую ско­рость на поверхности Земли, покинет ее на­всегда как при вертикальном, так и при наклон­ном или горизонтальном полете. При такой скорости в любом случае орбита не будет эллипсом.

Если еще больше увеличить скорость, раке­та полетит уже по гиперболе, причем чем выше скорость, тем больше будет «раскрываться» гипербола. Но, превысив вторую космическую скорость и преодолев земное притяжение, ракета останется в солнечной системе. Она превра­тится в спутника Солнца — искусственную пла­нету — и будет обращаться вокруг него по эллип­тической орбите.

Первым таким спутником Солнца стала со­ветская космическая ракета ,«Луна-1», старто­вавшая 2 января 1959 г. по направлению к Луне. Ракета удалилась от Земли по гипер­болической орбите, так как превысила вторую космическую скорость. Но через 5—6 дней она вышла из зоны действия земного тяготения, и ее полет всецело стал определяться при­тяжением Солнца. Скорость, которой обла-

168